AUTOMORPHIC EQUIVALENCE PROBLEM FOR FREE ASSOCIATIVE ALGEBRAS OF RANK TWO

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphic Equivalence Problem for Free Associative Algebras of Rank Two

Let K〈x, y〉 be the free associative algebra of rank 2 over an algebraically closed constructive field of any characteristic. We present an algorithm which decides whether or not two elements in K〈x, y〉 are equivalent under an automorphism of K〈x, y〉. A modification of our algorithm solves the problem whether or not an element in K〈x, y〉 is a semiinvariant of a nontrivial automorphism. In partic...

متن کامل

Automorphic Orbit Problem for Polynomial Algebras

It is proved that every endomorphism preserving the automorphic orbit of a nontrivial element of the rank two polynomial algebra over the complex number field is an automorphism.

متن کامل

A Cancellation Conjecture for Free Associative Algebras

We develop a new method to deal with the Cancellation Conjecture of Zariski in different environments. We prove the conjecture for free associative algebras of rank two. We also produce a new proof of the conjecture for polynomial algebras of rank two over fields of zero characteristic.

متن کامل

Cancellation Conjecture for Free Associative Algebras

We develop a new method to deal with the Cancellation Conjecture of Zariski in different environments. We prove the conjecture for free associative algebras of rank two. We also produce a new proof of the conjecture for polynomial algebras of rank two over fields of zero characteristic.

متن کامل

Positivity in Coefficient-Free Rank Two Cluster Algebras

Let b, c be positive integers, x1, x2 be indeterminates over Z and xm,m ∈ Z be rational functions defined by xm−1xm+1 = x b m+1 if m is odd and xm−1xm+1 = x c m+1 if m is even. In this short note, we prove that for any m,k ∈ Z, xk can be expressed as a substraction-free Laurent polynomial in Z[x±1 m , x ±1 m+1]. This proves FominZelevinsky’s positivity conjecture for coefficient-free rank two c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2007

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196707003573